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We consider the motion of a light particle when the force field is perturbed by
a small nose. If a certain relation between the mass of the particle and the noise
intensity holds, the motion of the particle will be close to periodic oscillations
or to a stable equilibrium which do not exist without the noise. We study
various classes of random perturbations. In particular, we consider the question
of computer simulation of these effects and calculate the correction term which
appears when the Gaussian perturbations are replaced by the simple random
walk. These are the stochastic-resonance-type effects, and their mathematical
description is based on the large deviation theory.

KEY WORDS: Stochastic resonance; noise-induced oscillations and equi-
libriums; large deviations; perturbed systems.

1. INTRODUCTION

Consider a differential equation

$Y� t= f (Y4 t , Yt), Y0= y, Y4 0=x, x, y # R1, 0<$<<1 (1)

Suppose that the set E=[( y* , y) : f ( y* , y)=0] consists of a curve y=Y( y* )
as shown in Fig. 1, and the function f ( y* , y) is positive below this curve and
negative above it. Then, as is known, for 0<$<<1, the solution will per-
form oscillations, which are close to the counterclockwise rotations around
the loop ABCD shown in Fig. 1: It takes time of order 1 to go form B to C
and from D to A, and transitions between A and B and between C and D
occur in time o(1) as $ a 0. These oscillations appear due to the bifurcations
in the one-dimensional vector field f (x, y), y is a parameter, when y changes.
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Fig. 1.

Let now the set E consist of three smooth curves X*&( y), X0*( y),
X*+( y) situated in the plane ( y* , y) as shown in Fig. 2. Let X*&( y) and
X*+( y) be stable zeros of the field f (x, y) for any y # R1. Assume that

X*&( y)<X0*( y)<X*+( y)

for y # R1. Then the system (1) has no periodic solutions, and if, addi-
tionally, we assume that the axis y does not intersect with these curves, the
system has no equilibrium points.

Consider small random perturbations of Eq. (1). To be specific, I will
consider first white-noise-type perturbations:

$y� =
t= f ( y* =

t , y=
t)+- = _( y* =

t , y=
t) b W4 t

(2)
y=

0= y, y* ==x, 0<=<<1

Here Wt is the one-dimensional Wiener process, _(x, y) is a bounded sepa-
rated from zero, smooth function. The stochastic term in (2) is understood
in the Stratanovich sense.

The goal of this paper is to show that the perturbed system (2) and
similar multidimensional systems under certain relation's between $ and =
may have periodic, in a sense, solutions and stable equilibriums even if
f ( y* , y) behaves like in Fig. 2. If the system behaves like in Fig. 1, other

Fig. 2.
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oscillations and a ``stable equilibrium point'' may appear. The velocity of
the particle governed by Eq. (1) has, say in the case of Fig. 2, two stable
equilibriums X*+( y) and X*&( y), y # R1. If the system is perturbed by a
small noise, then in the generic case, one of these equilibrium velocities
(which depends on the position of the particle) is ``more stable'' than the
other (see ref. 3, Chap. 4), so that the particle, roughly speaking, moves
with this ``more stable'' velocity until the other equilibrium velocity becomes
``more stable.'' This switching results in the oscillation or stabilization
studied in the paper. One should underline that the period of those oscilla-
tions and the rate of convergence to the equilibriums are of order 1 as =,
$ a 0. Note also, that our approach works in a rather general situation. In
particular, we do not assume that the system under consideration is poten-
tial: one can introduce the notion of quasi-potential (see ref. 3, Chap. 4) for
a wide class of dynamical systems and random perturbations.

This is a stochastic-resonance type effect (see refs. 1, 2), and the math-
ematical treatment of this effect is based on the large deviation theory for
stochastically perturbed dynamical systems.(3) Therefore, there are, actually,
much fewer reasons to consider Gaussian perturbations: the belief that the
noise is Gaussian is based on the central-limit-theorems-type results. But
the Gaussian approximation, in general, does not work for large deviations.
So that we have to study other types of perturbations. We will see that,
although the qualitative results are similar in these cases, the numerical
characteristics are different.

In the next section we study Eq. (2): we present the results and give
a sketch of the proof in the case of white-noise-type perturbations. Then,
in Section 3, we consider some other classes of perturbations. In particular,
shot-noise-type perturbations and rapidly oscillating perturbations are
considered. Questions related to computer simulations of the effects which
appear in system (2) when $ and = are small, are examined in Section 3
as well. In the last section, systems with many degrees of freedom are
considered.

2. ONE DEGREE OF FREEDOM

Rewrite (2) as the system:

X4 =
t=

1
$

f (X =
t , Y =

t)+
- =
$

_(X =
t , Y =

t) b W4 t

(3)

Y4 =
t=X4 =

t , X =
0=x, Y =

t= y
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Together with (3), consider the equation for the X-component with a
frozen variable Y= y:

X4 =, y
t =

1
$

f (X =, y
t , y)+

- =
$

_(X =, y
t , y) b W4 t

(4)
X4 =, x

0 =x

We say that Condition 1 is satisfied if for any y # R, the set [x # R :
f (x, y)=0] consists of three points X*&( y)<X0*( y)<X*+( y). The func-
tions X*\( y), X0*( y), as well as f (x, y) are assumed to have bounded and
continuous first derivatives. The points X*\( y) are stable roots of the equa-
tion f (X*\( y), y)=0 for any y # R : f $x(X*\( y), y)<0, y # R. The function
_(x, y) in (3) is assumed to have bounded derivatives and _2(x, y)�_2

0

>0.
A typical example of the functions X*\(Y ), X0*( y) satisfying Condition 1

is shown in Fig. 2.
If Condition 1 is satisfied, we can define functions

V\( y)=&2|
X *0 ( y)

X *\( y)

f (z, y)
_2(z, y)

dz

for any y # R.
We say that Condition 2 is satisfied if the functions V\( y) defined

above are monotone,

V $+( y)<0, V $&( y)>0, V� \= inf
y # R

V\( y)>0

and for some y* and 4: V+( y*)=V&( y*)=4 (see Fig. 3).
For c>(V� + 6 V� &), define Y&(C ) (Y+(C )) as the solution of the

equation V&(Y&(C ))=C, (V+(Y+(C ))=C ).

Fig. 3.
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Let Y� y
+(t) and Y� y

&(t) be defined as the solutions of equations:

Y�4 y
+(t)=X*+(Y� y

+(t)), Y� y
+(0)=y

(5)
Y�4 y

&(t)=X*&(Y� y
&(t)), Y� y

&(0)= y

Put

T1(C )=|
Y+(C )

Y&(C )

dy
X*+( y)

, T2(C )=|
Y+(C )

Y&(C )

dy
|X*&( y)|

T=T (C )=T1(C )+T2(C )

Define a T (C )-periodic function 9(t)=9C(t), 0�t<�, as the contin-
uous solution of the equation

94 C(t)={X*+(9C(t)),
X*&(9C(t)),

0�t<T1(C )
T1(C )�t<T (C )

9C(0)=Y&(C )

for t # [0, T ), and let

8(t)=8C(t)=94 C(t)

The function 8C(t) has discontinuities at points 0, \T, \2T,... .

Theorem 1. Let Conditions 1 and 2 be satisfied. Let

===($)=
C$

ln $&1

where C is a positive constant, and Y =($)
t be the solution of (2) with initial

conditions Y =($)
0 = y, Y4 =($)

0 =x.

1. If C<(V� + 7 V� &) and x<X0*( y), then for any A, h>0,

lim
$ a 0

Px, y[ max
0�t�A

|Y =($)
t &Y� y

&(t)|<h]=1 (6)

lim
$ a 0

Px, y {|
A

0
|Y4 =($)

t &X*&(Y� y
&(t))| 2 dt<h==1 (7)

If x>X0*( y), then (6) and (7) hold with replacement of Y� y
&(t) by Y� y

+(t)
and X*&( y) by X*+( y).

2. If V� +<C<V� & , then (6) and (7) hold for any x and y. If
V� &<C<V� + , then (6) and (7) hold with Y� y

&(t) and X*&( y) replaced by
Y� y

+ and X*+( y).
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3. If (V� + 6 V� &)<C<4 and Y =
0= y=Y&(C ), then for any A, h>0

lim
$ a 0

Px, y[ max
0�t�A

|Y =($)
t &9C(t)|>h]=0

(8)

lim
$ a 0

Px, y {|
A

0
|X =($)

t &8C(t)| 2 dt>h==0

uniformly in x from any compact subset of R1. If y{Y&(C ) then, first, the
trajectory Y =($)

t will come to Y&(C ) along Y� y
0(t) or Y� y

+(t) and then
(X =($)

t , Y =($)
t ) will be close to the periodic function (8C(t), 9C(t)) with an

appropriate phase shift.

4. If C�4=V\( y*) and Y =
0= y= y*, then for any A, h>0

lim
$ a 0

Px, y[ max
0�t�A

|Y =($)
t & y*|>h]=0

uniformly in x from any compact subset of R1. If y{ y*, then the trajectory
(X =($)

t , Y =($)
t ), first, will come to y* along Y� y

&(t) or Y� y
+(t) and then stay in

a small neighborhood of y*: for any A, h>0 and any x, y # R1 there exists
t̂= t̂( y) such that

lim
$ a 0

Px, y[ max
t̂�t�A

|Y =($)
t & y*|>h]=0

I will give a sketch of the proof of this theorem. The full proof can be
easily reconstructed from this sketch and the large derivation estimates
from (ref. 3, Chaps. 4 and 6).

Make a time change:

X� =
t=X =

$t , Y� =
t=Y =

$t , X� =, y
t =X =, y

$t

Then we derive from (3) and (4) that

X�4 =
t=f (X� =

t , Y� =
t)+- =$ _(X� =

t , Y� =
t) b W4 t

(9)
Y�4 =

t=$X� =
t , X� =

0=x, Y� =
0= y, =$=

=($)
$

and for X� =, y
t we have an equation

X�4 =, y
t =f (X� =, y

t , y)+- =$ _(X� =, y
t , y) b W4 t

(10)
X� =, y

0 =x

Since =($)=C$�(ln $&1), we have: =$==$($)=C�(ln $&1).
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Let D y
1 (D y

2 ) be the basin of X*&( y) (of X*+( y)):

D y
1 =[x<X0*( y)], D y

2 =[x>X0*( y)]

Define exit times

{~ y
i =min[t : X� =, y

t � D y
i ], i # [1, 2]

It follows from Theorem 4.4.2 from ref. 3, that for any h>0

lim
$ a 0

Px {exp {V+( y)&h
=$($) =<{~ y

2 <exp [
V+( y)+h

=$($) ==
=lim

$ a 0
Px[$&(V+( y)&h)�C<{~ y

2 <$&(V+( y)+h)�C ]=1 (11)

for x # D y
2 ,

lim
$ a 0

Px[$&(V&( y)&h)�C<{~ y
1 <$&(V&( y)+h)�C ]=1

for x # D y
1 . Since { y

i =min[t : X =, y
t � D i ] is distributed as ${~ y

i , i # [1, 2],
(11) implies:

lim
$ a 0

Px[$(C&V+( y)+h)�C<{ y
2 <$(C&V+( y)&h)�C ]=1, x # D y

2

(12)
lim
$ a 0

Px[$(C&V&( y)+h)�C<{ y
1 <$(C&V&( y)&h)�C ]=1, x # D y

1

Since (12) is satisfied for any h>0, we conclude that the process X =, y
t ,

X =, y
0 =x # D1 , defined by (4), leaves D1 immediately if C>V&( y) and $ a 0.

If C<V&( y), then Px[{ y
1 >M ] � 1 as $ a 0 for any M and x # D1 .

A similar statement holds for the exit time { y
2 from D2 .

On the other hand, when the process X =, y
t stays in D1 (in D2), it

spends most of the time in a small neighborhood of X*&( y) (of X*+( y)).
This follows from Theorem 4.4.3 of ref. 3. Taking into account smoothness
of X*\( y) and slowness of the Y-component in (9), one can derive that, for
any h>0, the process (X =($)

t , Y =($)
t ) spends most of the time in the h-neigh-

borhood of the curves X*+( y) or X*&( y) if $>0 is small enough. This
implies that when X =($)

t is in D2 (D1) the evolution of Y =($)
t is close as $ a 0

to the deterministic evolution governed by the first or second of equations
(5), depending on the sign of the difference X =($)

t &X0*(Y =($)
t ).

Equalities (12) together with the slowness of the Y-component imply
that X =($)

t , with probability close to 1, when $ is small, ``jumps'' to D2 if
Y =($)

t <Y&(C ) and to D1 if Y =($)
t >Y +(C ).
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These arguments allow to prove Theorem 1.
A similar result holds if the function f ( y* , y) in Eq. (1) behaves like in

Fig. 1. In this case, the functions V\( y) are well defined for y # [m, M],
where m is the local minimum of the curve Y( y* ) in Fig. 1, and M is the
local maximum, V+(M )=0, V&(m)=0. Assume additionally that these
functions are monotone, and let V+(Y*)=V&(Y*)=4. Then Y =($)

y stabi-
lizes to Y* if

lim
$ a 0

=($)
$

=0, lim
$ a 0

=($)
$

ln $&1�4

If =($)=C$(ln $&1)&1 and C # (0, 4), then a solution close to periodic with
the period T (C ) defined in Theorem 1 will appear. These oscillations
approach the loop shown in Fig. 1, when C tends to zero.

Example. Consider the linear oscillator with a friction:

$y� =&y&;y* ( y* 2&1)

Then m=&M=2;�3 - 3. Denote by X*&( y)<X0*( y)<X*+( y) the roots
of the polynomial &;X 3+;X= y. If | y|�2;�3 - 3 then all three roots are
real. When $<<1, the system has a periodic solution close to the relaxa-
tional oscillations. The point (0, 0) is an unstable equilibrium point and no
other equilibrium exits. Add to the equation a small white noise:

$y� =&y&;y* ( y* 2&1)+- = W4 t

Put ;X 4�2&;X 2=G(X ). Then

V\( y)=G(X0*( y))&G(X*\( y)) and V+(0)=V&(0)=
;
2

=4

If ;$�(2 ln $&1)�=($)<<$, then the unstable for the non-perturbed system
equilibrium at (0, 0) will be, in a sense, stable for the perturbed system: For
any A, h>0 and | y| small enough,

Px, y[ max
0�t�A

|Y =($)
t |<h] � 1

as $ a 0. Actually, one can even choose A=A($) such that A($) A � as
$ � 0 but not too fast.

If =($)=C$�(ln $&1), 0<C<;�2, then the system will perform oscilla-
tions with the amplitude L which satisfies the equation G(X0*(L))&
G(X*+(L))=C.
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One can show that, due to a certain symmetry in this example, the
process Y =

t can be stabilized at zero not just by the noise - = W4 t , but also
by a class of symmetric noises `=

t with the action functional =&1S� 0T (.),
where S� 0T (.) is regular enough if

lim
$ a 0

=($)
$

=0, lim
$ a 0

=($)
$

ln $&1=�

If the functions V\(u) are not monotone, the perturbed system may
have many asymptotically quasi-stable equilibriums and various oscillations
induced by the noise. They can be described in an analogous way.

3. NON-GAUSSIAN PERTURBATIONS. A REMARK ON
COMPUTER SIMULATIONS

1. Let !1(t) and !2(t) be independent Poisson processes with param-
eter *=&1, 0<=<<1, 0<*. Put ' =

t==(!1(t)&!2(t)). Consider perturbations
of Eq. (1) by '* =

t

$Y� =
t= f (Y4 =

t , Y =
t)+'* =

t , Y =
0= y, Y4 =

0=x (13)

Now, the noise consists of a sequence of small mean zero $-function-
like impulses which appear at random times with the intensity 2*=&1. It
is easy to see that '=

t tends to 0 as = a 0 and Y =
t converges to Yt . The

normalized process (1�- =) '=
t converges weakly on any time interval to

- 2* Wt , where Wt is a Wiener process. The perturbed process is, in a
sense, close to Y� =

t ,

$Y�� =
t= f (Y�4 =

t , Y� =
t)+- 2=* W4 t , Y� 0= y, Y�4 0=x (14)

and one could expect that the results of the previous section can be used
to describe Y =

t for 0<=<<$<<1. But since the behavior of Y =
t on time

intervals of order 1 for such = and $ is defined by large deviations, the
approximation (14) does not work.

To describe the behavior of Y =($)
t as $ a 0, =($) a 0, consider the process

X =, y
t :

$X4 =, y
t = f (X4 =, y

t , y)+'* =
t , X =, y

0 =x (15)

According to our reasoning in the previous section, we need the action
functional(3) for the family of processes X� =$, y

t , =$==�$ a 0, where

X�4 =$, y
t = f (X� =$, y

t , y)+'* =$
t , X� =$, y

0 =x
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The action functional for the Poisson family =$!1(t) is =$&1S� 0T (.), . # C0T ,
where (see Section 5.3 of ref. 3)

S� 0T (.)={|
t

0
L� (.* s) ds,

+�,

.s is absolutely continuous

for the rest of C0T

L� (;)={; ln
;
*

&;+*,

+�,

;�0

;<0

Using this and independence of !1(t) and !2(t) one can calculate the action
functional for '=

t==(!1(t)&!2(t)) and then the action functional (1�=) S0T (.)
for X� =$, y

t as =$ a 0. For . absolutely continuous,

S0T (.)=|
T

0
L(.s , .* s , y) ds

Actually, we need not the function L(x, ;, y), but the Legendre transforma-
tion H(x, :, y) of this function in ;, so that I calculate just H(x, :, y):

H(x, :, y)=*(e:+e&:)&2*&:f (x, y)

Assume that Condition 1 is satisfied. To define the counterparts of
V\( y), we should, according to the results of Chap. 5 of ref. 3, consider the
equation H(x, du�dx, y)=0. A solution of this equation satisfying some
additional conditions is called quasi-potential (see ref. 3, Section 5.4). Let
:=G( f ) be the inverse function to the function

f =
*(e:+e&:)&2*

:

Then the equation for u(x) has the form du�dx=G( f (x, y)). Consider the
solution of this equation with the condition u(X0*( y))=0, u(x)>0 for
x{X0*( y). It follows from ref. 3 that the amounts

V\( y)=u(X*\( y))=|
X *\( y)

X *0 ( y)
G( f (z, y)) dz (16)

characterize the exit times from the basins of X*+( y) and X*&( y) for the
process (15) so that bounds (11) hold.

This allows to repeat the arguments used in Theorem 1 to prove the
following result:
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Theorem 2. Let Y =
t be the solution of (13) with ' =

t introduced
above and ===($)=C$�(ln $&1). Let functions V\( y) be defined by (16).
Assume that Condition 1 is satisfied and the functions V\( y) satisfy Con-
dition 2. Then the statement of Theorem 1 holds.

One can consider more general impulse perturbations using results of
Chap. 5 of ref. 3.

2. Let &t be a continuous time Markov chain. Assume for brevity
that &(t) has just two states, 1 and 2, and that the transition intensities
matrix is equal to

\&q
q

q
&q+

Then, of course, the uniform distribution ( 1
2 , 1

2) is invariant.
Consider a continuous solution of a differential equation

$Y� =
t= f&(t�=)(Y4 =

t , Y =
t), Y =

0= y, Y4 =
0=x (17)

where f1(x, y)>0 and f2(x, y)<0 and

1
2 [ f1(x, y)+ f2(x, y)]= f (x, y)

is the same as in (1). It is easy to prove that Y =
t converges in probability

as = a 0, uniformly on any finite time interval, to the solution of (1) so that
(17) can be considered as a perturbation of (1). Again one can prove that

\Y =
t&Yt

- =
,

Y4 =
t&Y4 t

- = +
converges weakly as = a 0 to a Gaussian process. And again this normal
approximation does not describe the transitions between the neighbor-
hoods of X1*( y) and X2*( y).

To describe the behavior of solutions of (17), one should, first, consider
the equation

X4 =, y
t =

1
$

f&(t�=)(X =, y
t , y), X =, y

0 =x

with the frozen y. Large deviations for the process X� =$, y
t =X =, y

$t , =$=(=�$)
� 0, are described in Chap. 7 of ref. 3. One should calculate

lim
T � �

1
T

ln E exp {: |
T

0
f&(s)(x, y) ds==H(:, x, y) (18)
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If &(t) is the introduced above Markov chain, then H(:, x, y) is equal
(Theorem 7.7.2 from ref. 3) to the eigenvalue of the matrix

\&q+:f1(x, y)
q

q
&q+:f2(x, y)+

with the maximal real part. Such an eigenvalue is real and equal to

H(:, x, y)=:f (x, y)&q+- :2f
�

2(x, y)+q2

where f (x, y)= 1
2 ( f1(x, y)+ f2(x, y)), f

�
(x, y)= 1

2 ( f1(x, y)& f2(x, y)).
Let u(x) be the solution of the equation

H \du
dx

, x, y+=0, u(X0*( y))=0
(19)

u(x)>0 for x{X0*( y)

Then the function u(x) is a kind of the quasi-potential for this type of
perturbations. Solving problem (19), we find that

u(x, y)=q |
x

X *0 ( y)

f1(z, y)+ f2(z, y)
f1(z, y) f2(z, y)

dz

Put

V\( y)=u(X*\( y), y) (20)

Using the same arguments as in Theorem 1 and large deviation bounds
obtained in Chap. 6 of ref. 3 we can prove the following result.

Theorem 3. Let Y =
t be the solution of Eq. (17) and functions

V+( y) and V&( y) be defined by (20). Assume that Conditions 1 and 2 are
satisfied, and let ===($)=C$(ln $&1)&1. Then the statement of Theorem 1
holds.

One can use the same construction if &t is a Markov process with any
compact phase space E. Under certain mild conditions, the limit (18) exists
and is equal to the first eigenvalue H(:, x, y) of the operator A:: A:g(z)=
Ag(z)+:f (x, y, z) g(z), z # E, where A is the generator of the process &t .

This approach can be used also if &t is not a Markov process but a
stationary process with strong enough mixing properties.
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3. Consider Eq. (2) with _( y* , y)#1:

$Y� =
t= f (Y4 =

t , Y =
t)+- = W4 t

To describe the asymptotics of Y =
t as =, $ tend to zero, we should consider

large deviations for the process X� =$, y
t introduced in Section 2:

X�4 =$, y
t = f (X� =$, y

t , y)+- =$ W4 t (21)

where =$==�$. Computer simulations represent an essential part of research
related to stochastic-resonance-type effects: the Wiener process multiplied
by - =$ in (21) is replaced by a symmetric random walk !{, h

t with time unit
{ and space unit h, and the equation (21) is replaced by the corresponding
difference equation.

Since the diffusion coefficient in (21) is equal to =$; the time and space
steps should satisfy the equality h2�{==$.

But the large deviations for the random walk !{, h
t and - =$ Wt are, in

general, different, so that one should make special arrangements to make
this approximation working. In our problems the quasi-potential which
defines the functions V\( y) is important. In the case of process (21) the
quasi-potential, actually, is the classical potential of the field f (x, y) (up to
a constant factor), and it is defined as the antiderivative in x of the function
&2f (x, y), y is a parameter.

To calculate the quasi-potential for the corresponding difference equa-
tion when - = Wt is replaced by a symmetric random walk !{, h

t which
makes one step to the right or to the left in a time unit, one should con-
sider the function

G{, h(x, y, z)=zf (x, y)+
1
{

ln Ex exp[z(!{, h
t &x)]

=zf (x, y)+
1
{

ln \ehz+e&hz

2 +
Let {�h2=1�=$. Define +={�h,

H(x, y, z)=zf (x, y)++&2 ln
e +z+e&+z

2

Then as one can derive from ref. 4, Sections 3.2 and 4.2, the equation
for the quasipotential u(x) has the form H(x, y, du�dx)=0.
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Let Z=Z+( f ) be the function inverse to

f =f (z)=&
1

z+2 ln
e +z+e&+z

2
(22)

Then

u(x)=u(x, y)=|
x

x0

Z+( f (z, y)) dz

For 0<+<<1, we derive from (22):

f =f (z)=&
1
2

z+
+2z3

12
+o(+2) (23)

One can see from (23) that the zero approximation Z0
+( f ) for Z+( f )

is given as Z0
+( f )=&2f. So that if {�h2=1�=$ and +={�h is small, the

results of simulations will be close to the real behavior of the process X� =, y
t

defined by (21).
We can calculate also the correction term which compensates the

replacement of the diffusion by random walk. Equation (23), implies that
a more precise expression for the function Z+( f ) is given by the formula

Z+( f )=&2f& 4
3 +2f 3+o(+2)

This means that a more precise expression for the quasi-potential corre-
sponding to the random walk with {�h2=1�=$ and {�h=+, 0<+<<1, is
given by the formula

u(x)=&2 |
x

x0

f (z, y) dz&
4+2

3 |
x

x0

f 3(z, y) dz

4. MANY DEGREES OF FREEDOM

Consider a system of n degrees of freedom:

$Y� t= f (Y4 t , Yt), Y0= y, Y4 0=x, x, y # Rn (24)

Here f (x, y) is an n-dimensional vector smoothly depending on
x, y # Rn, 0<$<<1. To be specific we examine the perturbations of (24) by
the standard n-dimensional Gaussian white noise:

$Y� =
t= f (Y4 =

t , Y =
t)+- = W4 t , Y4 =

0=x, Y =
0= y (25)
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Together with (25), consider the process X =, y
t , y # Rn:

$X4 =, y
t = f (X =, y

t , y)+- = W4 t , X =, y
0 =x

Assume that, for any y # Rn, the vector field f (x, y) has two asymp-
totically stable equilibriums X1*( y) and X2*( y) and a saddle point X0*( y)
separating them. Let 1=1y be the separatrice surface dividing Rn into two
parts: D1 which is attracted to X 1*( y), and D2 which is attracted to X2*( y),
D1 _ D2 _ 1=Rn. Let the functions X1*( y), X2*( y), X 0*( y) be twice con-
tinuously differentiable. We refer to these assumptions as Condition 3.

Recall the notion of quasi-potential of the vector field b(x) in Rn with
respect to the white noise perturbations:(3) A twice continuously differen-
tiable function U(x), x # Rn, is called the quasi-potential of the field b(x),
if the field l(x)=b(x)+{U(x) is orthogonal to {U(x) for each x # Rn.

If the field b(x) is potential, b(x)=&{U(x), then the potential U(x)
coincides with the quasi-potential and l(x)#0. The orthogonality of l(x)
and {U(x) gives an equation for the quasi-potential:

|{U(x)|2+b(x) } {U(x)=0

where b(x) } {U(x) means the scalar product in Rn. One should mention
that the smooth quasi-potential exists not always: Eq. (26) may have only
generalized solution. One can always introduce the quasi-potential (Lipschitz
continuous but not necessarily smooth) as the solution of a variational
problem for the action functional (see ref. 3, Section 4.2).

Condition 4. Assume that the field f (x, y) has a quasi-potential
U(x, y) for each y # Rn, and U(x, y) is twice continuously differentiable
in x, y # Rn, {xU(X i*( y), y)=0, i # [0, 1, 2], and {xU(x, y){0 if x{
X i*(Y ).

Put

Vi ( y)=2(U(X0*( y))&U(X i*( y))), i # [1, 2]

Let, as before,

===($)=
C$

ln $&1

Denote by {i={=, y
i the first exit time from Di , i # [1, 2]: {i=min[t: X =, y

t

� Di ].
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It follows from the results of Section 4.2 of ref. 3 and considerations of
Section 2, that for any h>0 and X =, y

0 =x # Di , that

lim
$ a 0

Px[$(C&2Vi ( y)+h)�C<{=, y
i <$(C&2Vi ( y)&h)�C ]=1 (26)

Consider two dynamical systems in Rn:

Y4 i (t)=Xi*(Yi (t)), Yi (0)= y, i # [1, 2] (27)

Since the dynamical systems in Rn, n>1, may have much more diverse
behavior than in R1, we restrict ourselves just to some sufficient conditions
for the existence of a noise induced close-to-periodic solution.

Condition 5. Suppose that a closed domain 6/Rn exists such that
it is bounded by #1/[ y # Rn : V2( y)=C], by #2/[ y # Rn : V1( y)=C],
and by the side surface S (Fig. 4). Assume that #1 , #2 and S are smooth
manifolds with an edge. Let #1 and #2 be homeomorphic to the (n&1)-
dimensional ball. Let M=6 & [ y : V1( y)=V2( y)] be also a smooth
manifold with an edge, and let M be situated between #1 and #2 as in
Fig. 4, M & #i=<, i # [1, 2]. Let V2( y)>V1( y) above M and V2( y)<
V1( y) below M, V1( y)<C above #1 and V1( y)>C below #1 , and V2( y)<C
below #2 and V2( y)>C above #2 .

Assume that the trajectories Y1(t), defined by (27), enter the domain
6 through #2 and S and leave 6 through #1 . Assume that Y2(t) enter 6
through #1 and S and leave 6 through #2 .

Suppose that Conditions 3, 4, and 5 are satisfied. For a point z # #2 ,
consider the trajectory Y1(t)=Y1(z, t), Y1(z, 0)=z. Let

{1={1(z)=min[t : Y1(z, t) # #1]

Fig. 4.
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Due to Condition 5, {1(z)<� for any z # #2 . Denote by Y2(Y1(z, {), t) the
trajectory of the system Y2(t) with the initial condition Y2(Y1(z, {1), 0)=
Y1(z, {1) # #1 . Let

{2={2(z)=min[t : Y2(Y1(z, {1), t) # #2]

Consider a transformation T of #2 : Tz=Y2(Y1(z, {1), {2). It follows
from our assumptions that T is a transformation of #2 in itself. Assume that
T is continuous. Since #2 is homeomorphic to a ball, there is a point z* # #2

such that Tz*=z*. Define [{1(z*)+{2(z*)]-periodic function 9(t):

9(t)={Y1(z*, t),
Y2(Y1(z*, {1), t&{1),

0�t<{1(z*)
{1(z*)�t<{1(z*)+{2(z*)

Put

8(t)={X1*(9(t)),
X2*(9(t)),

0�t<{1(z*)
{1(z*)�t<{1(z*)+{2(z*)

and define 8(t) for all t�0 as ({1(z*)+{2(z*))-periodic function.
Consider the trajectory (Y4 =($)

t , Y =($)
t ) starting from the point (X1*(z*), z*).

Then the component Y4 =
t will be close to X1*(9(t)) in the L2

[0, :] -norm and
Y =

t will be close to 9t uniformly on [0, :] for any : # [0, {1(z*)], if $ is
small enough. This can be derived from (26), if one takes into account that
outside of any neighborhood of the curves X i*( y), i # [0, 1, 2], the compo-
nent Y4 =($)

t changes much faster then the Y =($)
t -component. After 9(t)

crosses #1 , X =
t=Y4 =($)

t will ``jump'' to a neighborhood of X2*(9(t)) with
probability close to 1 as $ is small, and the evolution of Y =

t for t>{1(z*)
will be close to Y2(Y1(z*, {1), t&{1) until the time {1(z*)+{2(z*), when
X =

t will again switch to X1*(9(t)), and so on. This implies the following
result:

Theorem 4. Let Conditions 3, 4, and 5 be satisfied and ===($)=
C$(ln $&1)&1. Then there exists a fixed point z* # #2 of the transformation T,
and for any A, h>0

lim
$ a 0

PX*1 (z*), z* { max
0�t�A

|Y =($)
t &9t |+|

A

0
|Y4 =($)

t &8t | 2 dt>h==0 (28)

Theorem 4 provides conditions for process (Y4 =
t , Y =

t) to be close to the
periodic function (8t , 9t) on the time interval [0, A] with probability
close to 1 as 0<$<<1. One can give some additional conditions which
guarantee stability of the oscillations (8t , 9t).
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One can prove (28) with the norm of the difference Y4 =
t&8t different

from L2
[0, A]-norm. But, in general, one can not take the uniform norm.

Let now

lim
$ a 0

=($) ln $&1

$
=C> sup

y # M
V1( y)

This is a counterpart of part 4 of Theorem 1. Assume that the trajectories
Y2(t) cross M from below upward (see Fig. 4), and Y1(t) cross M in the
opposite direction. Moreover, let the projections ?1( y) and ?2( y) of the
fields X1*( y) and X 2*( y) on M, y # M, be directed inside M on the bound-
ary �M of M. Then Y =

t , Y =
0= y # M, stays in a small neighborhood of M

during any time interval [0, A] with probability close to 1 as 0<$<<1.
The motion Y =

t will be close to a dynamical system in M corresponding to
a vector field B( y), y # M. The field B( y) is a linear combination of the
fields ?1( y) and ?2( y). It is a delicate question to calculate the weights with
which ?1( y) and ?2( y) are included in this combination, and we are going
to address this question elsewhere. If B( y) has a stable equilibrium q # M,
then one can expect that the component Y =

t , Y =
0 # M stabilizes to q for

0<$<<1 in the sense of part 4 of Theorem 1.
Finally, I would like to note that just the case when f (x, y), for each

y # Rn, has not more than 2 stable equilibriums is considered here. Exist-
ence of many stable attractors leads to a number of interesting effects. We
consider this case in ref. 5. Random perturbations of more general dynami-
cal systems with fast and slow components are considered in ref. 5 as well.
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